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Abstract: Walnut is one of the most important nuts regarding their production and consumption.
The available but uncharacterized genetic resources of walnut are important for the development
and breeding of local varieties. Greece holds an important number of genetically uncharacterized
walnut landraces, especially within the area of Parnon, which is considered to play a significant role
as an in situ gene bank, due to its unique location traits. However, the genetic characterization and
further use of these resources has been insufficient, due to the absence of genetic studies. In this study,
we implemented SSR molecular markers, both to genetically characterize the walnut tree genetic
diversity of the Parnon area and to identify its unique genetic structure, which will form the starting
material for subsequent breeding programs. Overall, high levels of genetic variation were found
among the individual walnut accessions that were collected in the Parnon mountain region.

Keywords: Juglans regia; local walnut genotypes; molecular characterization; SSR

1. Introduction

One of the most economically significant cultivated nut tree species is the Persian
walnut (Juglans regia L.). Walnut cultivation is distributed worldwide, and global walnut
production has been steadily increasing during the last decade (2012–2021) from 2,368,722
to 3,500,172 tn [1]. Numerous studies and reviews have highlighted walnuts’ nutritive
value because of their rich content of a variety of nutrients and phytochemical agents
important to human health [2–6].

Greece, according to FAOSTAT, held the fourth position in Europe concerning the
average walnut production from 2012 to 2021 [1]. Moreover, specifically for the year 2021,
Greece held the first position in Europe and the ninth position worldwide, revealing a
significant and steady increase from 23,432 tn to 62,810 tn during the last decade [1]. These
figures reveal the high interest and potential of walnut cultivation in Greece.

Greece’s walnut cultivation is characterized by two different cultivating systems.
On one hand, there are the new, steadily increasing walnut orchards, in which selected
universal cultivars are chosen for cultivation. The most frequently used cultivars are
the lateral bearing “Chandler”, “Lara”, and “Pedro” and the apical bearing cultivars
“Franquette” and “Ronde de Montignac”. On the other hand, many traditional native
landraces still exist. These landraces have a long history of cultivation, are well adapted to
the region’s climate, are productive, and support rural economy.
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In the frame of European projects, local landraces have been located and characterized
in various regions of Greece. The majority of them are located in the regions of Central Mace-
donia, Thessaly, Peloponnese, and Crete [7–9]. Some of these landraces, along with other
internationally cultivated walnut genotypes, were kept in gene banks and were further
evaluated for their genetic diversity. The results revealed that the examined Greek walnut
landraces presented higher genetic diversity, compared to common walnut cultivars [10].

Walnut cultivation used to be very common in the mountainous Greek villages. Walnut
trees were planted in almost every house yard, for their delicious fruits and the thick shade
they provided. Walnut tree fruits and leaves were exploited for their pharmaceutical uses,
and also to make hair and textile dyes [11].

Peloponnese is known as one of the most favorable areas for walnut cultivation, and
it accounts for the second highest walnut production in Greece [12]. It is famous for its
thumping mountain ranges, where walnut cultivation still relies on old landraces, and
specifically in the Parnon mountain range, which extends into the prefectures of Laconia
and Arcadia.

Although an effort was made to identify, select, and use Greek walnut landraces in
the past, studies on their genetic diversity were not systematic. Nowadays, in the Parnon
region, where a vast gene pool of local walnut landraces can still be found, new efforts are
being made to characterize and exploit the local walnut population.

Various methods have been employed to investigate the genetic diversity and re-
lationships among Persian walnut cultivars, which include amplified fragment-length
polymorphism (AFLP) [13], randomly amplified polymorphic DNA (RAPD) [14], and inter-
simple sequence repeat (ISSR) markers [10,15,16]. The use of molecular markers underlines
the importance of precise cultivar identification, establishing genetic fingerprints, and
verifying parentage and information on genetic relationships.

Simple Sequence Repeat (SSR) molecular markers are considered to be a well-established
and effective approach for evaluating the genetic diversity of Juglans regia (common walnut)
cultivars and have been widely adopted in recent research studies that primarily aimed to
characterize and discern walnut cultivars based on their distinct genetic profiles [17–22].
The estimation of various diversity metrics, including the polymorphism information
content (PIC), the observed heterozygosity, and the expected heterozygosity, provides
a quantitative measure of genetic diversity [22]. Furthermore, SSR markers could play
an essential role in genetic mapping investigations aiming to pinpoint quantitative trait
loci (QTLs) linked to important walnut traits, such as disease resistance, nut quality, and
yield [23,24]. Such results can then be implemented in marker-assisted selection (MAS)
strategies in breeding programs.

SSR markers are characterized by their high polymorphism, indicative of the presence
of multiple alleles or genetic variations within a given population. Their polymorphic
nature empowers them to accurately discriminate between genotypes, rendering them
invaluable in genetic diversity evaluations and genetic mapping efforts. Given their
property of co-dominant inheritance, SSR markers can effectively differentiate heterozygous
individuals (bearing two differing alleles) from homozygous individuals (possessing two
identical alleles), a characteristic that contributes to precise genotype identification and the
comprehensive exploration of genetic diversity [25]. Moreover, the variable count of repeat
units within microsatellites enables discrimination among closely related individuals, an
assessment of genetic diversity, and differentiation between various cultivars or breeding
lines [26].

Capillary electrophoresis (CE) has significantly advanced the field of genotyping
studies by offering a highly efficient, precise, and automated method for separating and
analyzing DNA fragments. Capillary electrophoresis provides excellent separation of DNA
fragments based on their size, making it possible to distinguish between alleles that may
differ by just a few base pairs. This high resolution is crucial for accurately genotyping
genetic variations, such as single-nucleotide polymorphisms (SNPs) and microsatellites
(SSRs). Overall, capillary electrophoresis has revolutionized genotyping studies by offering
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an efficient, automated, and high-resolution method for DNA fragment analysis, making it
a valuable tool for various scientific applications, including genotyping, proteomics, and
environmental monitoring [27–29].

Using capillary electrophoresis (CE) with Simple Sequence Repeat (SSR) markers
for genotyping studies offers several advantages, making it a popular choice for genetic
research and diversity assessment, providing excellent separation of DNA fragments based
on their size and allowing for precise determination of allele sizes. This high resolution is
crucial for distinguishing different alleles in microsatellite regions, allowing for accurate
differentiation between homozygous and heterozygous individuals, providing detailed
genotype information. CE with SSR markers is widely used in various genetic research
areas, such as population genetics, phylogenetics, and evolutionary studies [27].

In the present study, the combination of highly polymorphic SSR markers and frag-
ment analysis by CE was implemented for the molecular characterization and assessment
of the genetic diversity of local walnut trees that were collected in the Parnon mountain
range in Peloponnese. In summary, the selected SSR markers proved to be very informative
about the high genetic variation of the collected walnut genotypes, although low genetic
distances between the individuals were found. Also, no correlation was found between the
observed genetic variability and the collection sites of the walnut samples.

2. Results
2.1. Polymorphism of SSR Primer Pairs

Nine SSR primer pairs were employed to assess the genetic diversity and population
structure of 47 walnut genotypes. Across these 47 walnut genotypes, a total of 242 poly-
morphic bands were identified for all the markers used. The number of alleles per primer
pair ranged from 19 to 42 (as detailed in Supplementary Table S1).

In our analysis, the values for Na ranged from 6.5 to 12.83, with an average of 9.3.
Similarly, Ne values spanned from 5.94 to 11.27, with a mean of 7.97. As for He values, they
varied from 0.76 to 0.88, with an average of 0.84. In contrast, Ho values ranged between
0.00 and 0.84, with an average of 0.47. Shannon’s Information Index exhibited a range
from 1.70 to 2.37, with an average of 2.03. Allelic patterns across the six groups of walnut
samples are depicted in Figure 1.
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Figure 1. Allelic patterns for all SSR markers across the six groups that formed according to the
altitude range.

Moreover, the PIC values for each primer pair fell within the range of 0.93 to 0.97,
with an average of 0.94, and the PI values ranged from 0.0019 to 0.0102, with an average of
0.0061 (as summarized in Table 1).
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Table 1. Number of different alleles (Na), number of effective alleles (Ne), observed heterozygosity
(Ho), expected heterozygosity (He), Shannon’s Information Index (I), polymorphism information
content (PIC), and Probability of Identity (PI) from 47 walnut genotypes.

Primer Na Ne Ho He I PIC PI

WGA009 9.50 7.78 0.54 0.84 2.03 0.94 0.0073
WGA321 9.50 8.07 0.62 0.85 2.06 0.95 0.0059
WGA349 9.17 7.50 0.57 0.84 2.04 0.94 0.0071
WGA069 9.83 8.46 0.60 0.87 2.17 0.95 0.0057
WGA118 6.50 5.94 0.03 0.76 1.70 0.93 0.0102
WGA202 6.67 6.20 0.00 0.78 1.73 0.94 0.0059
WGA276 9.17 7.33 0.54 0.83 2.00 0.94 0.0073
WGA001 12.83 11.27 0.84 0.88 2.37 0.97 0.0019
WGA376 10.67 9.23 0.53 0.87 2.20 0.96 0.0035

Mean 9.3 7.97 0.47 0.84 2.03 0.94 0.0061

2.2. Population Structure Analysis

The genetic structure of the 47 walnut genotypes was inferred using SSR markers. The
LnP(D) score, which estimates the posterior probability of the data for a specific K (the
number of populations), increased as K increased, and ∆K reached its highest point at K = 3.
Essentially, the STRUCTURE program, when utilizing the admixture model with correlated
allele frequencies, and the ad hoc metric based on the second-order rate of change of the
likelihood function (∆K) [30] displayed a distinct peak at the true value of K = 3 (as shown
in Figure 2).
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Figure 2. (a) LnP(D) and (b) ∆K evaluation of the 47 walnut genotypes, displaying a distinct peak at
the value of K = 3.

Consequently, the 47 genotypes were categorized into three clusters, irrespective of
their geographic origin or altitude level. The first cluster consisted of individuals 05, 06, 24,
36, 34, 15, 21, 26, 31, 33, 13, 12, 41, and 11, with altitudes ranging from 720 to 1297 m. The
average genetic distance (expected heterozygosity) between individuals in this cluster was
0.9087. The second cluster included genotypes 07, 40, 22, 45, 30, 42, 28, 17, 35, 47, 43, 04,
46, 44, 08, 03, 27, 14, and 09, with altitudes between 730 and 1224 m. The average genetic
distance (expected heterozygosity) among these individuals was 0.9186. Finally, the third
cluster contained individuals with altitudes ranging from 840 to 1290 m, such as genotypes
25, 23, 18, 16, 01, 02, 39, 37, 20, 19, 32, 10, 29, and 38. The average genetic distance (expected
heterozygosity) within this cluster was 0.8940 (depicted in Figure 3).
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Each color (red, green and blue) corresponds to each cluster of samples.

As most of the walnut accessions examined in this study were mainly obtained from
the Parnon mountain region, the findings of the population structure analysis were applied
onto a map. The outcomes indicated that the observed grouping was not influenced by
their geographical source or altitude level.

2.3. Principal Coordinate Analysis

Principal Coordinate Analysis (PCoA) was conducted to validate the outcomes of
the population structure analysis. The three principal coordinates accounted for 6.96%,
6.61%, and 6.39% of the molecular variance, summing up to a total of 19.95% (as shown in
Figure 4). All the examined genotypes were categorized in accordance with the results of
the population structure analysis. The PCoA revealed that there was a considerable overlap
among all three clusters, and the genetic distance separating them was relatively small.
However, specific individuals, such as GR-Parnon 32, GR-Parnon 33, and GR-Parnon 07,
were observed to exhibit differentiation from the main clusters (as depicted in Figure 4).
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2.4. UPGMA Cluster Analysis

The UPGMA cluster analysis showed that the walnut genotypes from the same origin
did not exhibit obvious clustering, and small different groups of individuals were formed,
as seen in Figure 5.
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2.5. Genetic Diversity Analysis

The genetic differentiations of the 47 walnut genotypes were analyzed using AMOVA.
The results of AMOVA for the SSR markers revealed a percentage of 100% within popula-
tions. The results from Shannon’s Information Diversity Statistics indicated that 27% of the
total diversity was attributed to the diversity among clusters and 73% was attributed to the
diversity within clusters.

3. Discussion

Walnut trees exhibit a wide-ranging genetic diversity, with significant differentiation
present within walnut germplasm [31]. The observed genetic variation and the heterozy-
gosity among the walnut genotypes primarily originates from plantations grown from
seeds [32]. Evaluating the available germplasm is essential for future crop improvement
programs [33,34], and the examination of these resources for diverse characteristics yields
valuable insights for the selection of advantageous genetic assets [35,36].

Molecular markers offer a rich source of data about genome structure and evolu-
tion [37]. They prove invaluable for tasks such as mapping both qualitative and quantita-
tive traits, constructing linkage maps [38], improving germplasm, conducting genotyping,
identifying parentage, and exploring population genetics [39]. Furthermore, through
genome-wide association studies, it becomes feasible to identify and pinpoint genes associ-
ated with crucial traits, facilitating marker-assisted selection (MAS) and gene cloning [40].

In our study, we estimated the genetic diversity of 47 walnut trees through the utiliza-
tion of SSR markers initially developed in J. nigra [41]. The results acquired indicate that
the chosen SSR markers effectively enable the differentiation of genetic diversity among the
walnut tree genotypes originating from the north-eastern Parnon mountain region. Notably,
all the primers employed in this study demonstrated a 100% polymorphism rate, a finding
congruent with the outcomes reported by Ahmed et al. [14] and Kabiri et al. [17]. This
discovery aligns with numerous other studies that have also employed these markers to
explore genetic diversity in walnut trees, such as those conducted by Ruiz-Garcia et al. [42],
Ebrahimi et al. [43], and Vischi et al. [44].

The highest average number of alleles per locus, which amounted to 23.8, was doc-
umented by Victory et al. [45], while Zhang et al. [46] observed the lowest number at 3.
Meanwhile, other researchers have reported values ranging from 4.25 to 12 alleles per locus
in their studies, such as Itoo et al. [47], Orhan et al. [48], Balapanov et al. [20], Vahdati
et al. [49], Mahmoodi et al. [50], Ebrahimi et al. [51], and Dangl et al. [21].

In our current investigation, we identified a total of 242 alleles, with an average of
9.3 alleles per locus in the genetic profiling of 47 genotypes. These findings align with
previous studies conducted by Balapanov et al. [20], where they also reported relatively
high average numbers of alleles—specifically, 9.6 and 9.4.

Variations in the number of alleles, whether lower or higher, can be attributed to
several factors, including the composition of the study group in terms of germplasm
diversity, the types of markers used, the geographical characteristics of the sampled region,
and other relevant factors [19,52]. It is worth noting that minor disparities in polymorphic
alleles across different studies may arise from the specific choice of genotypes or cultivars.
Nevertheless, the outcomes of our study are consistent with prior investigations into genetic
diversity among walnut genotypes using SSR markers. It is important to acknowledge that
the genetic and phylogenetic distances among the genotypes can also influence the level of
polymorphism detected by SSR markers, particularly owing to the outcrossing nature of
walnuts [26].

In recent investigations, the observed heterozygosity has been reported within the
range of 0.57 to 1.00 (with an average of 0.80) as noted by Eser et al. [53], 0.633 to 0.895
(with an average of 0.75) according to Balapanov et al. [20], 0.548 to 0.927 (with an average
of 0.803) in the research conducted by Zhou et al. [54], 0.39 to 0.80 (with an average of 0.60)
in a study by Orhan et al. [48], and 0.250 to 0.833 (with an average of 0.514) as documented
by Bujdoso and Cseke [55]. In this study, the average Ho ranged from 0.00 to 0.84, with a
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mean of 0.47, which agrees with the Ho of around 0.5 reported by Aradhya et al. [56] for
the region of Eurasia, while for walnut populations from Central Asia, Western Asia, and
the Middle East, Pollegioni et al. [57] found 0.559.

Furthermore, in our study, we found that the expected heterozygosity (He = 0.84)
exceeded the observed heterozygosity (Ho = 0.47), a pattern that has been previously
documented in various research endeavors [20,34,42,48,50,58,59]. This discrepancy suggests
a potential deficiency of heterozygotes within the genotypes or populations, which could
be attributed to factors such as unrestricted inbreeding, selective mating, a small sample
population size, and other related variables.

The PIC values, which consider the number of alleles per locus and their relative
frequencies in the population, serve as indicators of the discriminatory potential of a given
locus. Markers with PIC values greater than 0.5 are considered informative, while those
exceeding 0.7 are deemed well-suited for genetic mapping. Both types of markers can
significantly enrich our understanding of walnut breeding and genetics [48]. Furthermore,
an analysis of the Probability of Identity (PI), which is implemented as an individual
identification estimator, showed very low values for each SSR marker, with an average of
0.0061, which is within the range reported by Waits and colleagues (2001) [60].

Recent research studies have reported a range of PIC values from 0.15 to 0.86. For
instance, Guney et al. [58] found PIC values falling within the range of 0.42 to 0.86, with an
average of 0.68, while Orhan et al. [48] observed PIC values ranging from 0.54 to 0.85, with
an average of 0.68. In a study conducted by Bernard et al. [61], the PIC values ranged from
0.15 to 0.75, with an average of 0.52, and Vahdati et al. [49] reported PIC values spanning
from 0.56 to 0.82, with an average of 0.72. These variations in PIC values across different
research studies can be attributed to factors such as the use of different types and quantities
of SSR markers and variations in the number and sampling locations of specimens [48].

It is noteworthy that all SSR markers used in this study demonstrated high PIC values,
indicating that the chosen markers were well-suited for evaluating the genetic diversity
among the 47 walnut genotypes. Also, we observed that the average PIC value was higher
when compared to the previously mentioned studies. These differences in PIC values
among studies may arise from the utilization of distinct SSR markers or from the origins of
samples, which could encompass considerably more diverse regions, potentially spanning
different continents [26]. Notably, the Eurasia region, which includes Greece, has been
recognized for its notably high levels of genetic diversity in walnuts [57].

The results from STRUCTURE indicated the formation of three different clusters irrespec-
tive of the geographic origin or altitude level of the collected walnut tree samples. Furthermore,
PCoA revealed that there was extensive overlap among the walnut genotypes belonging to all
three clusters, and the genetic distances separating most of them were relatively small, but a
considerable number of individuals exhibited higher genetic distances. These findings can
be explained by the presence of old walnut tree plantations, mainly seed-based plantations,
in the selected area of the Parnon mountain range. These individuals could prove valuable
resources of important genetic traits for future breeding programs. The UPGMA dendrogram
validated the PCoA findings, where many subclusters were formed.

4. Materials and Methods
4.1. Plant Material

Fresh leaves from 47 walnut tree samples were collected from the north-east Parnon
mountain region (Table 2 and Figure 6) and stored at −20 ◦C.

Table 2. Coordinates where the local walnut genotypes were collected in the north-east region of the
Parnon mountain range, in Greece.

No. Local Walnut Selection Latitude Longitude Altitude

1 GR-PARNON-01 37◦15′13.8′′ N 22◦33′14.2′′ E 1031

2 GR-PARNON-02 37◦15′13.3′′ N 22◦33′14.2′′ E 1011
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Table 2. Cont.

No. Local Walnut Selection Latitude Longitude Altitude

3 GR-PARNON-03 37◦14′27.1′′ N 22◦33′26.5′′ E 1079

4 GR-PARNON-04 37◦14′18.1′′ N 22◦33′25.0′′ E 1045

5 GR-PARNON-05 37◦14′36.3′′ N 22◦30′22.4′′ E 720

6 GR-PARNON-06 37◦14′42.4′′ N 22◦30′15.5′′ E 755

7 GR-PARNON-07 37◦14′39.6′′ N 22◦30′35.4′′ E 730

8 GR-PARNON-08 37◦14′54.1′′ N 22◦34′05.3′′ E 1062

9 GR-PARNON-09 37◦14′55.8′′ N 22◦34′34.6′′ E 1224

10 GR-PARNON-10 37◦14′55.7′′ N 22◦34′37.3′′ E 1247

11 GR-PARNON-11 37◦14′28.5′′ N 22◦34′31.6′′ E 1297

12 GR-PARNON-12 37◦14′27.3′′ N 22◦34′42.7′′ E 1280

13 GR-PARNON-13 37◦14′22.9′′ N 22◦34′36.6′′ E 1278

14 GR-PARNON-14 37◦14′35.0′′ N 22◦34′20.3′′ E 1212

15 GR-PARNON-15 37◦16′22.1′′ N 22◦31′32.1′′ E 1020

16 GR-PARNON-16 37◦15′49.1′′ N 22◦31′58.9′′ E 950

17 GR-PARNON-17 37◦15′47.4′′ N 22◦32′02.3′′ E 980

18 GR-PARNON-18 37◦15′44.2′′ N 22◦31′57.6′′ E 940

19 GR-PARNON-19 37◦15′55.4′′ N 22◦32′50.1′′ E 1135

20 GR-PARNON-20 37◦15′55.0′′ N 22◦32′51.0′′ E 1105

21 GR-PARNON-21 37◦15′58.4′′ N 22◦33′10.5′′ E 1100

22 GR-PARNON-22 37◦14′47.2′′ N 22◦32′30.1′′ E 865

23 GR-PARNON-23 37◦15′21.7′′ N 22◦31′33.2′′ E 910

24 GR-PARNON-24 37◦15′19.5′′ N 22◦31′32.7′′ E 878

25 GR-PARNON-25 37◦14′57.0′′ N 22◦32′25.2′′ E 840

26 GR-PARNON-26 37◦15′57.6′′ N 22◦32′58.4′′ E 1127

27 GR-PARNON-27 37◦16′08.6′′ N 22◦31′53.3′′ E 1110

28 GR-PARNON-28 37◦14′20.3′′ N 22◦33′04.1′′ E 921

29 GR-PARNON-29 37◦16′24.3′′ N 22◦32′42.9′′ E 1279

30 GR-PARNON-30 37◦14′37.5′′ N 22◦32′40.8′′ E 884

31 GR-PARNON-31 37◦16′09.3′′ N 22◦32′19.1′′ E 1204

32 GR-PARNON-32 37◦16′15.1′′ N 22◦32′06.1′′ E 1217

33 GR-PARNON-33 37◦16′17.8′′ N 22◦32′08.3′′ E 1232

34 GR-PARNON-34 37◦14′40.6′′ N 22◦33′09.9′′ E 985

35 GR-PARNON-35 37◦14′38.7′′ N 22◦33′09.5′′ E 1001

36 GR-PARNON-36 37◦14′38.6′′ N 22◦33′05.4′′ E 950

37 GR-PARNON-37 37◦14′45.9′′ N 22◦34′07.8′′ E 1078

38 GR-PARNON-38 37◦14′46.6′′ N 22◦34′51.7′′ E 1290

39 GR-PARNON-39 37◦14′54.1′′ N 22◦34′05.4′′ E 1061

40 GR-PARNON-40 37◦14′39.7′′ N 22◦33′09.5′′ E 803

41 GR-PARNON-41 37◦15′01.2′′ N 22◦34′34.9′′ E 1287

42 GR-PARNON-42 37◦17′18.0′′ N 22◦29′31.0′′ E 905

43 GR-PARNON-43 37◦15′30.4′′ N 22◦32′37.7′′ E 1041

44 GR-PARNON-44 37◦16′37.9′′ N 22◦31′04.2′′ E 1053

45 GR-PARNON-45 37◦17′21.8′′ N 22◦30′17.7′′ E 880

46 GR-PARNON-46 37◦16′30.7′′ N 22◦31′37.3′′ E 1052

47 GR-PARNON-47 37◦16′06.8′′ N 22◦31′48.9′′ E 1036
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4.2. Molecular Analysis Using SSR Markers

DNA extraction from fresh leaves was performed according to the CTAB (cetyl trime-
thylammonium bromide) protocol as described by Doyle and Doyle [62]. DNA quality
evaluation and quantification was performed by using a Quawell UV–Vis Spectrophotome-
ter Q5000 (Quawell Technology, Inc., San Jose, CA, USA). Nine SSR molecular markers
were selected after a systematic review of the available scientific literature for the geno-
typic characterization of walnut cultivars, and they were developed by Woeste et al. [41].
Information on the SSR primer pairs is shown in Table 2. PCR amplifications for the SSR
markers were performed in 25 µL reaction volumes containing 20 ng of genomic DNA, 1×
PCR buffer, 0.5 µM of primer, 0.2 mM of DNTPs, and 1 U of Kapa Taq polymerase. PCR
reactions for each SSR marker were performed using a SureCycler 8800 thermocycler (Agi-
lent Technologies, Santa Clara, CA, USA) under the following thermal cycling conditions:
a first step at 94 ◦C for 5 min; followed by 35 cycles segmented in 30 s at 94 ◦C, 30 s at
varied annealing temperatures based on the primers (Table 3), and 30 s at 72 ◦C; and a
final extension at 72 ◦C for 5 min. The PCR products were analyzed on a 2% agarose gel in
1× TAE buffer. The Quick-Load® 1 kb Plus DNA Ladder (New England Biolabs, Ipswich,
MA, USA) was used as a molecular weight size marker in each gel, in order to validate the
expected size of the PCR products. Further analysis of the PCR products was performed
by means of fragment analysis using the dsDNA 915 Reagent kit (Agilent, Santa Clara,
CA, USA) in the 5200 Fragment Analyzer System (Agilent, Santa Clara, CA, USA). The
dsDNA 915 Reagent kit is suitable for the analysis of dsDNA fragments between 35 and
5000 bp. This specific genetic analysis method comprises a series of techniques in which
DNA fragments are fluorescently labeled, separated by capillary electrophoresis (CE), and
sized by comparison to an internal standard. Also, relative quantification between samples
can be obtained using this kit.
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Table 3. Details and characteristics of 9 SSR primers used across 47 genotypes of walnut.

Primer Primer Sequence (5′–3′) Repeat Motif Annealing
Temperature (◦C)

Product Size
Range (bp)

WGA009 F CATCAAAGCAAGCAATGGG (GA)16 51 231–245
R CCATTGCTCTGTGATTGGG

WGA321 F TCCAATCGAAACTCCAAAGG (GA)14 51 223–245
R TGTCCAAAGACGATGATGGA

WGA349 F GTGGCGAAAGTTTATTTTTTGC (CT)14 52 262–274
R ACAAATGCACAGCAGCAAAC

WGA069 F TTAGTTAGCAAACCCACCCG (GA)4ATATAA(GA)1 54 160–182
R AGATGCACAGACCAACCCTC

WGA118 F TGTGCTCTGATCTGCCTCC (GA)18(GT)11 54 186–200
R GGGTGGGTGAAAAGTAGCAA

WGA202 F CCCATCTACCGTTGCACTTT (GA)11 54 259–295
R GCTGGTGGTTCTATCATGGG

WGA276 F CTCACTTTCTCGGCTCTTCC (GA)14 55 168–194
R GGTCTTATGTGGGCAGTCGT

WGA001 F ATTGGAAGGGAAGGGAAATG (GA)5GCA(GA)3GCA(GA)3 52 180–192
R CGCGCACATACGTAAATCAC

WGA376 F GCCCTCAAAGTGATGAACGT (AG)2AA(AG)6 54 230–265
R TCATCCATATTTACCCCTTTCG

4.3. Molecular Data Analysis

The size of each amplified allele was determined by comparison with an internal
standard (Ladder 35–5000 bp) in the ProSize v3.0 data analysis software (Agilent, Santa
Clara, CA, USA). Allele frequencies were computed, and the distance matrix derived from
the nine SSR markers was employed for several analyses. For the statistical analysis of the
molecular data, the 47 walnut genotypes were clustered into six groups according to their
collection site altitudes (Table 4). The analysis comprised a calculation of the polymorphic
information content (PIC) for each primer, to assess the markers’ utility and effectiveness,
and also the Probability of Identity (PI) for each marker, through Cervus 3.0.7 software [63].
Additionally, various parameters, including the number of alleles (Na), effective number of
alleles (Ne), expected heterozygosity (He), observed heterozygosity (Ho), and Shannon’s
Index (I), were determined. Furthermore, we computed the variation in genetic diversity
(Shannon Informational Diversity) in relation to altitude levels. Further genetic analyses
involved an Analysis of Molecular Variance (AMOVA) and Principal Coordinate Analysis
(PCoA). All these analyses were performed using GenAlEx 6.5 [64,65] as the analytical tool.
The genetic distance matrix was applied to construct the Unweighted Pair Group Method
with Arithmetic mean (UPGMA) tree [66], facilitated by MEGA X [67].

Table 4. The 47 walnut samples were grouped together for the marker analysis according to their
altitude range.

Groups of Samples Altitude Range

1 720–755 m

2 803–884 m

3 905–985 m

4 1001–1079 m

5 1100–1135 m

6 1204–1297 m

To enhance the clustering of walnut genotypes, we employed the model-based Bayesian
clustering algorithm within STRUCTURE v.2.3.4 [68]. For each K value (ranging from 1 to
10), STRUCTURE was independently executed 10 times, with a burn-in period of 10,000 iter-
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ations and 100,000 iterations for MCMC (Markov chain Monte Carlo). The analysis utilized
the admixture model with correlated allele frequencies, as proposed by Falush et al. [69].
To determine the optimal number K of clusters that best explained the observed genetic
structure, we employed the STRUCTURE Harvester website [70] and implemented the
Evanno method [30].

5. Conclusions

The fundamental objective of any diversity assessment is to quantify the extent of
variation within a population, pinpoint and choose outstanding plants, and preserve
these seedling trees for future utilization. In summary, SSR markers are proven to be a
valuable tool for assessing genetic diversity and identifying genetically unique or rare
walnut genotypes, due to their high polymorphism, co-dominant inheritance, and ease of
use. By understanding the genetic diversity present in walnut tree populations, breeders
can make informed decisions about which trees to cross in order to develop new walnut
varieties with improved characteristics, such as disease resistance, nut size, and taste.

In our study, high levels of genetic variation were found among the individual walnut
genotypes that were collected in the Parnon mountain region. Our results also suggest
that there is no significant correlation between the observed genetic variability and the
geographic origin or altitude of the collected walnut genotypes. This fact contributed to
the formation of overlapping clusters. Our findings suggest that the collected walnut tree
genotypes belong to one population—that of the geographic origin of the Parnon mountain
range—and are characterized by high levels of genetic diversity. The genetic diversity of
Greek genotypes could substantially contribute towards the development of new varieties
in walnut breeding efforts. Thus, Greece could be considered a long-established region
of walnut diversity with a vast gene pool resource. The genetic diversity of traditional
Greek walnut tree populations is being rapidly lost due to the introduction of international
cultivars. Thus, the conservation of Greek walnut tree landrace genotypes is very important.

Moreover, the variation in agronomic traits of Greek walnut tree populations would be
of great interest for future studies and future cultivar improvement. Future studies on Greek
J. regia genotypes are expected to employ broader and more comprehensive samplings
across different regions in Greece. These studies will incorporate genetic analysis with
microsatellite markers, along with correlation of the SSR markers and phenotypic traits.
This approach will contribute to a more detailed and comprehensive exploration of the
Greek walnut population’s genetic architecture.
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